Date	\square
Project	\square
Engineer	\square
Contractor	\square

The diffuser

- Tubing diffuser
- Made of 22 ga brushed steel for ducts inferior to 457 mm (18 in) in diameter, and 20 ga for diameters superior or equal to 457 mm (18 in).
- Diameter from 203 mm (8 in) to 1419 mm (56 in).
- PVC gasket
-Tight sea between sections.
- Assembled with union sleeve.
- Steel reininforcements installed inside ducts of more than 433 mm (17 in) in diameter.
- Painted with a TGIC free polyester powder coat.
- Colour choosed by client on RAL colour chart only.
- Slots containing eccentric rollers and / or nozzle rollers.
- 100 mm (4 in) long eccentric rollers.
- Alphanumerically adjustment of duct's air flow.
- Air flow pattern over 180 degrees.
- Easy-to-clean
- A reducer fitting, or perforated balancing damper with a self-lock ing mechanism, installed after a maximum of 5 consecutive active sections of the same diameter.
- The duct diffuser can be active or passive (without slots).

All of the standard accessories (elbows, connection sleeves, reduction connectors, multi-branch connectors, etc.) are available in the exact dimensions of the duct.

Accessories

Big-end

small-end

Elbows are big-end

Assembling

The RRA diffuser sections are connected by connection sleeves which are adapted to the diameter of the duct.

RRA - Réglage de la direction du jet d'air

Thanks to the shape of the eccentric rollers and adjustment dial with alphanumeric characters, the air jet's direction at the outlet of the diffuser can vary up to 180°. For each direction, there are two (2) roller positions ("reduced" or "not reduced"), as illustrated in figure E .

The length of each roller is 100 mm and they are individually adjustable.
As a result, the combinations of airflow are almost infinite. In manufacturing, the ducts are individually adjusted for each project. The standard setting for the rollers is set to diffusion mode, in the positions " 21 " and " 65 " alternately.
This setting produces strong induction, which can be used to meet heating and cooling needs, thereby creating high mixing levels. The nozzle rollers can only be set in the open and closed position.

As a result, the divergent mode allows jets to blow in more accurate directions. This mode also allows a longer projection of the airflow. In specific zones which are habitually difficult to cover, a specialized setting can be created. Figures C and D show the relationship between the position of the eccentric roller and the direction of the exiting airflow. Note that to maximize air projection, multiple jets can be orientated in the same direction to optimize the coverage of a zone, even when heating.

Eccentric roller Figure E

Guide of direction of flow

Nozzle roller (DRB)

Duct length - L_{R}	1000	1500	1700	2000
Slot length - L_{S}	800	1300	1500	1800
	Weight / slot (kg)			
	0.30	0.48	0.56	0.67
	Weight of passive RRA (kg)			
Diameter of RRA (mm)	Thickness of the metal sheet : 0.85 mm			
200	4.20	6.38	7.15	8.41
251	5.28	7.92	8.97	10.55
302	6.35	9.52	10.79	12.70
353	7.42	11.13	12.69	14.84
403	8.47	12.71	14.40	16.94
	Thickness of the metal sheet : 1.00 mm			
454	11.41	17.00	19.30	22.66
505	12.67	18.93	21.43	25.19
556	13.94	20.83	23.58	27.72
607	15.69	23.21	26.22	30.73
657	16.93	25.07	28.32	33.21
708	18.97	27.74	31.25	36.51
759	20.33	29.74	33.50	39.14
810	21.70	31.73	35.75	41.77
861	23.07	33.73	38.00	44.40
911	24.40	35.69	40.21	46.98
962	26.40	38.31	43.08	50.23
1013	27.79	40.35	45.37	52.90
1064	29.19	42.38	47.65	55.56
1115	30.59	44.41	49.93	58.22
1165	31.96	46.40	52.17	60.83
1216	33.36	48.43	54.46	63.50
1267	34.76	50.46	56.74	66.16
1318	36.16	52.49	59.02	68.82
1369	37.56	54.52	61.31	71.48
1419	38.93	56.51	63.55	74.10
		Standar		

Codification for reducers

Codification for the branches

Codification for endcap and collar

Codification for sleeves

RRA - Codification

Suspension with rail

RAI	Description				
		Aluminum rail 1 1/4 in $\times 13 / 4 \mathrm{in} \times 10 \mathrm{ft}$			
		Steel rail $15 / 8$ in $x 7 / 8$ in $x 10 \mathrm{ft}$ A:2 ро B:7/8 ро			
		$\begin{aligned} & 9003 \\ & 9010 \\ & \overline{X X X X} \end{aligned}$	$=$ White = Cream = Color = Unpai	00SB = Solar Black OOSM = Silver Matte AL * (write the \#) ted	Color
RAI	ALU	9003			Example

RKG	Accessories supplied for aluminum rail (ALU)
RKJ	Junction bar plate $200 \times 28 \times 12 \mathrm{~mm}$ $(713 / 16 \times 1 / 2 \times 11 / 16 \mathrm{in})$ Plate:60 mm $\times 16 \mathrm{~mm}(23 / 8 \mathrm{in} \times 5 / 8$ in)
RKC	Coupling assembly with bolt and washer for installation with aluminum rail (ALU)
	Accessories supplied for steel rail (S33)

Example

