

WKD 380

Diffuseur industriel

catalogue 1.1.6

Table des matières

Description, domaines d'application et bénéfices	1
Configuration et fonctionnement	2
Plages d'application et sélection rapide	3
Diagrammes de performance	
WKD 380 - DN 600	4
WKD 380 - DN 800	5
WKD 380 - DN 1000	6
Niveau de puissance acoustique et pertes de charge	7
Trajet vertical de l'écoulement	7
Dimensions et poids	8
Spécifications	9
Codification	9

Présentation et bénéfices

Diffuseur à chambre de turbulence

Le diffuseur WKD 380 a été spécialement développé afin de répondre aux besoins en air dans les endroits à plafond élevé. Sa conception permet l'installation en suspension libre.

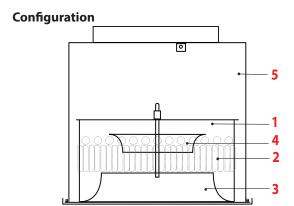
Le WKD 380 est un diffuseur à jet hélicoïdal à forte induction présentant une partie frontale ronde, une chambre de turbulence intégrée dans le plenum, ainsi qu'une buse de réglage.

Les mécanismes d'ajustement du WKD 380 ainsi que sa buse de réglage facilitent la variation de direction du jet d'air (horizontalement à verticalement).

Le WKD 380 représente un excellent choix pour un système efficace et complet, quel que soit le mode de ventilation, chauffage ou refroidissement et ce, en milieu industriel ou commercial. L'ajustement peut se faire manuellement ou motorisé.

Bénéfices

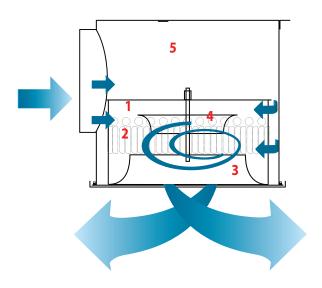
- Écoulement d'air ajustable
- Puissance sonore faible
- Diminution rapide des vitesses et des écarts de température
- Réduction des coûts d'énergie pour le traitement de l'air
- Ajustement manuel ou motorisé
- Possible modification de la force de pénétration du jet d'air en variant son intensité et l'induction
- Sa buse longue portée permet une très grande pénétration verticale, en mode chauffage

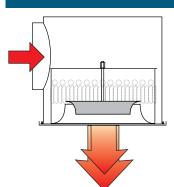


Domaines d'application

- Espaces commerciaux
- Théatres
- Centres d'exposition
- Magasins
- Espaces industriels
- Gymnases

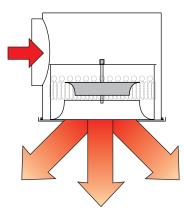
WKD 380

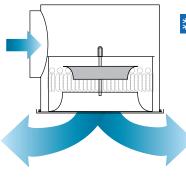

Configuration et fonctionnement


Le diffuseur WKD 380 est composé d'une chambre de turbulence cylindrique (1) autour de laquelle sont placées des lamelles dirigeant l'air (2) vers le déflecteur (3) et d'une buse longue portée réglable manuellement ou de manière motorisée (4). Ses composantes sont contenues dans un plenum (5). Ce diffuseur est disponible dans les dimensions nominales 600 / 800 / 1000 et adapté pour des hauteurs allant jusqu'à 30 m (100 pi). Les débits d'air peuvent aller jusqu'à 9000 m³/h (5300 pcm) par diffuseur. Le diffuseur est fini peint thermolaqué à base de polyester sans TGIC. Il a une surface lisse évitant l'accumulation de poussière, facilitant le nettoyage et résistant à l'écaillement et à la décoloration. Les couleurs sont disponibles selon la charte de couleurs RAL.

Fonctionnement

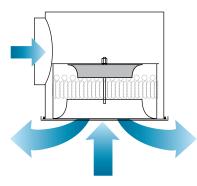
Le flux d'air entrant dans la chambre de turbulence (1) crée un mouvement hélicoïdal intensif selon le positionnement de la buse (4). L'écoulement de l'air à la sortie du déflecteur (3) produira une induction et une pénétration variable.


Fonctionnement selon les modes d'opération

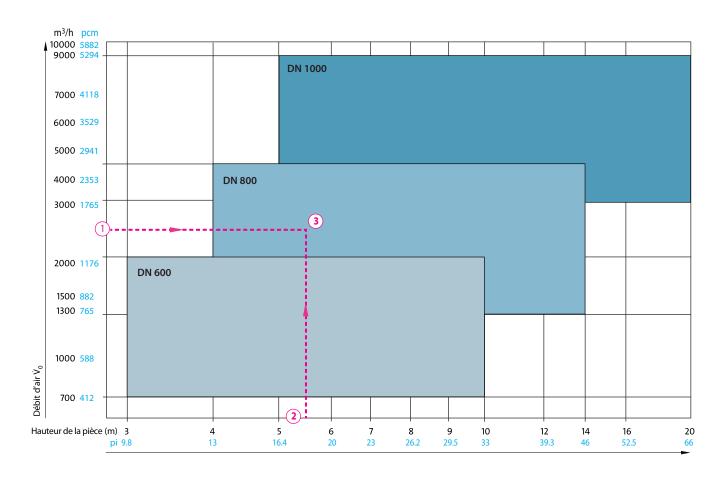


Chauffage

Buse: Position 1 Écoulement vertical stable avec de grande pénétration


Buse: Position 2 Écoulement vertical avec un effet hélicoïdal

Refroidissement

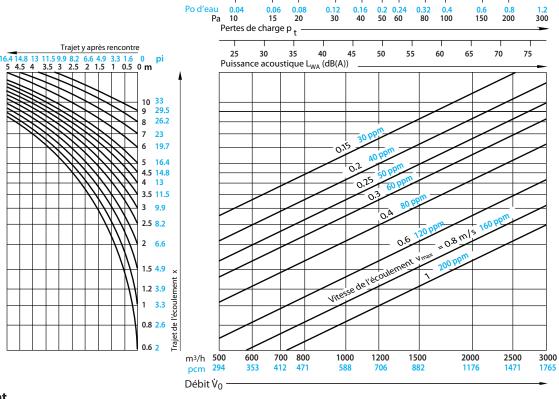


Buse: Position 4 Écoulement horizontal (même en suspension libre) avec une portée horizontale maximale et une induction primaire élevée

Plages d'application et sélection rapide

	L _{WA} (dB(A))	V ₀ (m³/h)	Δp (Pa)	Espace minimum (m)	y (m)
DN 600	30	650	14	~2	4.0
	40	900	27	~2	6.0
	50	1200	50	3	8.0
DN 800	40	1550	12	~2	6.5
	50	2400	28	3	10.0
	60	3600	65	8	12.0
DN 1000	45	2400	14	2	6.0
	55	3600	33	7	9.0
	65	5500	75	14	12.0

Spécifications : L'espace minimum pour une hauteur d'installation de 4 m (13 pi) pour que la vitesse du débit dans la zone occupée ne dépasse pas 0.2 m/s La profondeur de pénétration lors du chauffage est de $\Delta T = +10$ °C.

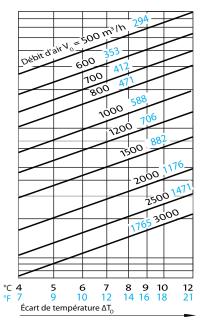


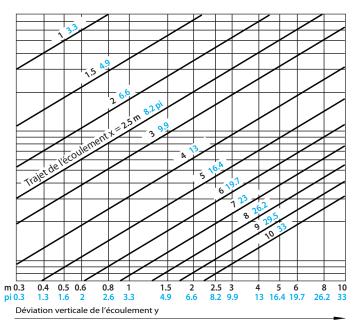
Diagrammes de performance

DN 600

En suspension libre sans influence du plafond

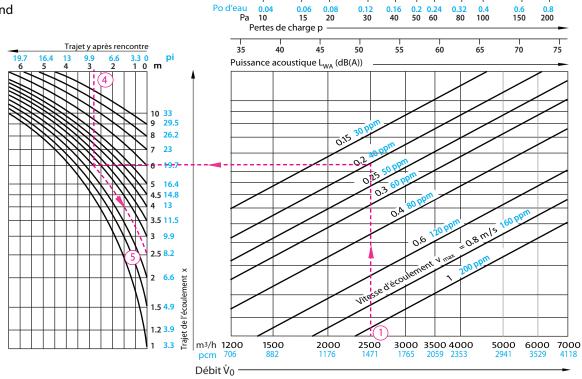
Note: Avec l'influence du plafond, multiplier les vitesses par 1.4.




Déviation de l'écoulement

chauffage

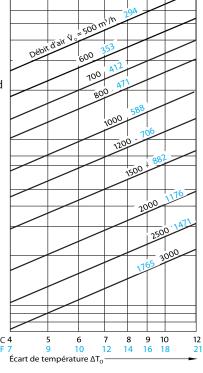
Comportement de l'écoulement horizontal en suspension libre sans influence de plafond par rapport à l'écart de température

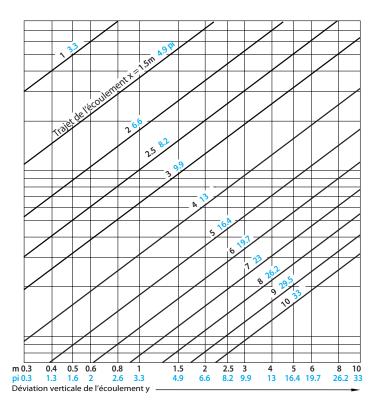

Diagrammes de performance

Po d'eau

DN 800 En suspension libre

sans influence du plafond

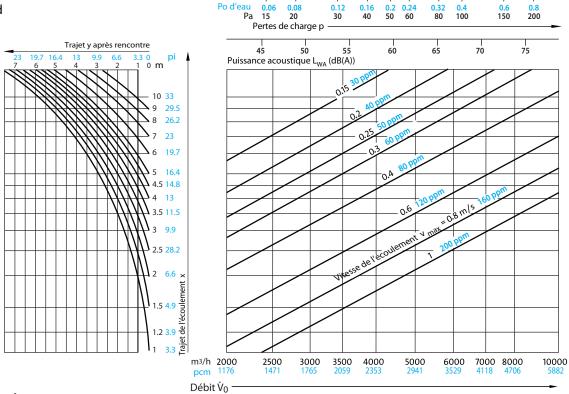

Note: Avec l'influence du plafond, multiplier les vitesses par 1.4.



Déviation de l'écoulement

chauffage

Comportement de l'écoulement horizontal en suspension libre sans influence de plafond par rapport à l'écart de température



Diagrammes de performance

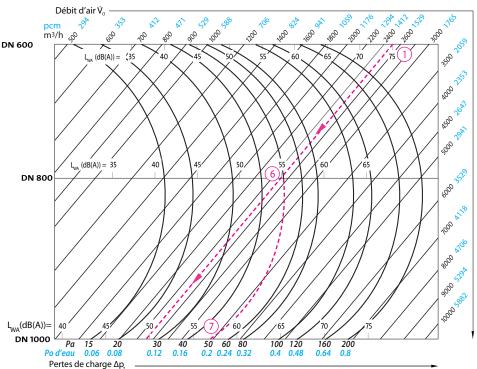
DN 1000 En suspension libre

sans influence du plafond

Note: Avec l'influence du plafond, multiplier les vitesses par 1.4.



Déviation de l'écoulement


chauffage

Comportement de l'écoulement horizontal en suspension libre sans influence de plafond par rapport à l'écart de température

4 5 6 13 16.4 19.7

Niveau de puissance acoustique et pertes de charge

L'absorption de la pièce n'est pas considérée. Pour une comparaison avec les valeurs nord-américaines, réduire la puissance acoustique de 10 dB. Les valeurs sont basées sur un écoulement isothermal.

Spécifications:

Hauteur de la pièce : 5.5 m (18 pi) Hauteur de l'installation : 4.0 m (13 pi) Vitesse d'écoulement maximale à une

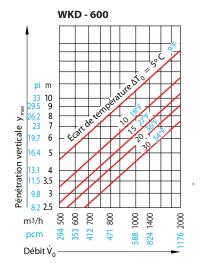
hauteur de 1.8m : 0.2 m / s Débit d'air : 2500 m³/h 1

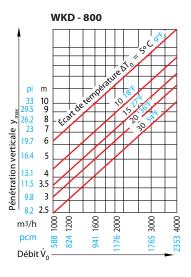
Recherché:

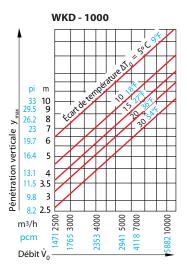
- 1- Dimension du diffuseur
- 2- Espace minimum entre diffuseurs
- 3- Puissance acoustique L_{WA}
- 4- Pertes de charge Δp_t ,

Solution:

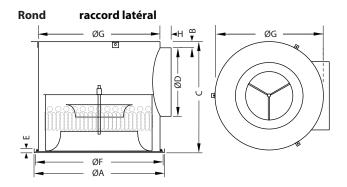
- 1. Du diagramme "plage d'application", on lit : DN800. (3)
- 2. Du diagramme de performance et pour un débit de 2500m³/h: y = hauteur de l'installation : $4 \text{ m} - 1.8 \text{ m} = 2.2 \text{ m} \boxed{4}$

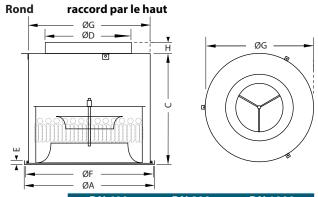

on trouve le trajet de l'écoulement x = 2.5 m (8 pi). (5)


D'où l'espace minimum entre diffuseurs : $2 \times 2.5 \text{ m} = 5 \text{ m} (16 \text{ pi})$


3 et 4. Du diagramme "Niveau de puissance acoustique et pertes de charge" on peut lire : $L_{WA} = 55 \text{ dB}$ $\Delta Pt = 50 Pa (7)$

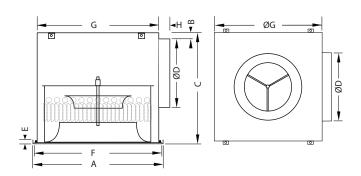
Trajet vertical de l'écoulement

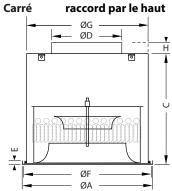


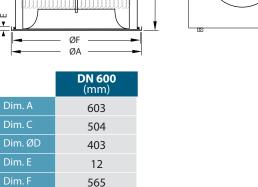


WKD 380

Dimensions et poids


	DN 600 (mm)	DN 800 (mm)	DN 1000 (mm)
Dim. ØA	600	800	1080
Dim. B	33	50	50
Dim. C	504	701	803
Dim. ØD	403	505	607
Dim. E	7	7	7
Dim. ØF	586	787	1066
Dim. ØG	560	760	1040
Dim. H	50	50	50
Poids (kg)	27,5	53	66,3


	DN 600 (mm)	DN 800 (mm)	DN 1000 (mm)
Dim. ØA	600	800	1080
Dim. C	504	701	803
Dim. ØD	403	505	607
Dim. E	7	7	7
Dim. ØF	586	787	1066
Dim. ØG	560	760	1040
Dim. H	50	50	50
Poids (kg)	27,5	53	66,3


ØG

	DN 600 (mm)
Dim. A	603
Dim. B	33
Dim. C	504
Dim. ØD	403
Dim. E	12
Dim. F	565
Dim. G	552
Dim. H	50
Poids (kg)	27,5

565

552 50

27,5

Dim. G

Poids (kg)

Spécifications

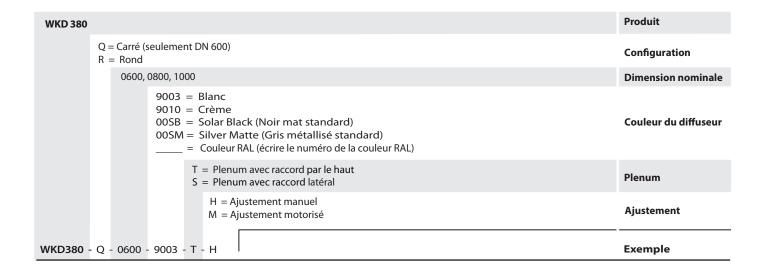
1. Description et caractéristiques physiques

- 1.1 Le diffuseur d'air à jet hélicoïdal devra être fabriqué en acier. Le diffuseur carré ou rond devra être muni d'une buse de réglage quidant l'écoulement de l'air.
- 1.2 Le diffuseur devra être muni d'une chambre de turbulence composée d'une plaque ronde à ailettes estampées.
- 1.3 Le mécanisme d'ajustement du diffuseur devra être disponible en mode manuel ou motorisé.
- 1.4 Le diffuseur devra être fini peint thermolaqué à base de polyester sans TGIC. Il devra avoir une surface lisse évitant l'accumulation de poussière, facilitant le nettoyage, résistant à l'écaillement et à la décoloration. La couleur selon la charte de couleurs RAL, sera au choix de l'architecte ou du client.
- 1.5 Le plénum sera fini en acier galvanisé non-peint. Un fini thermolaqué est offert en option.

2. Performances

La performance devra être garantie à l'aide de courbes de performances ou par logiciel de simulation pour les zones critiques. Celles-ci devront indiquer les pertes de charges et la puissance acoustique. Les courbes montreront une vue de coupe de l'air en mode refroidissement isothermal et chauffage, avec une vitesse nominale en zone occupée à 1.8 m (6 pi) du sol ou selon la demande de l'ingénieur.

3. Installation


Le diffuseur à jet hélicoïdal devra se monter sur un plenum en acier galvanisé fourni par le manufacturier.

4. Équilibrage

L'équilibrage du diffuseur devra être exécuté par un technicien en équilibrage de système de ventilation détenant un certificat de qualification professionnel.

5. Qualité requise : NAD Klima, modèle WKD 380

Codification

www.nadklima.com

NAD Klima

144, rue Léger, Sherbrooke, QC, J1L 1L9, Canada 819 780-0111 • 1 866 531-1739

info@nadklima.com

